ATOMIC VOLUIIE AS A PERIODIC FUNCTION.

By Thomas Bayley.
Received September 7 , 1898.

IN a communication to the Chemical News (April 7, 1898), ${ }^{1}$ the author showed that between each halogen and the next succeeding alkali metal there is a point of atomic weight that may be assumed to indicate the commencement of a cycle. This point, on the hypothesis of atomic condensation from cooling protyle, marks the temperature, expressed in terms of atomic weight, at which the tide of evolution turned and the conditions began again to necessitate the appearance of the positive atoms inaugurating a new cycle. It was shown that if the size of the cycles be reckoned from the "critical" points, the measurements are regular, and that each cycle corresponds exactly to an increment of atomic weight equal to $15.044 \times x, x$ being one of the integers ${ }^{2} \mathrm{I}, \mathrm{I} ; 3,3 ; 6,6$, taken consecutively. The apparent irregularity in the cyclic dimensions thus disappears, but the sequence of the individual elements remains unchanged and the increments of atomic weight between each atom and its next neighbor still appear to be quite irregular. But in saying that the elements occur irregularly, we merely assert that they do not appear at equal intervals, and the absence of this empirical regularity does not imply the absence of law. The study of atomic volume, on the contrary, discloses some interesting relations between the elements and suggests a definite influence ruling their occurrence. The atomic volume of an element is the result of the action of one of the fundamental forces with which the atom is endowed; this force is the attraction of cohesion between atoms of like kind. Atomic volume is thus a very important property of the elements, and if any general relations exist between atomic volumes it is desirable that they should be shown. The accompanying chart of atomic volume has been prepared and abscissae have been drawn through the "critical" points, marking the cyclic boundaries. These "critical lines" are, for the sake of easy reference, marked with letters, the lines through atomic weight 7 .0I being called A; the line through atomic weight $22.05, B$; through $37.09, C$; through $82.21, D$;

[^0]through $127.33, E$; through $217.57, F$; and the line through $307.83, G$. Points corresponding to atomic volumes $30,60,90$, r20, 150, etc., have been marked off on the line A, and lines parallel to the ordinate have been drawn through these points cutting the critical lines at right angles. The "critical intersections" of these horizontal lines with the critical lines are referred to as $A_{30}, B_{30}, C_{30}, D_{50}$, etc. It is possible to draw through various critical intersections a series of straight lines, each of which passes also through the points of atomic volume of two elements on the chart. The lines that can be so drawn are given below under the heading I. It will be seen that they are "analogous lines," that is, they pass through atom analogues in every instance. The coincidences of lines and points although not mathematically exact are very close approximations, even when the scale of the chart is so large as one-tenth inch per unit of atomic weight and atomic volume. This is a notable fact when one considers that the determinations of density have been made at different temperatures, and compared with water at different temperatures, and that even if the determinations had been made at a standard temperature this would still have lain at varying distances from their respective melt-ing-points, and that a certain influence upon atomic volume must be credited to the forces of crystallization, to allotropy, etc. In addition to the lines through the "critical intersections" a large number of analogous lines can be drawn through three elements. These are given under the second heading (II). In a number of instances the lines cross in an element, thus locating it both as regards atonic weight and atomic volune; and by following out the system of analogous lines it is possible to tentatively assign atomic volume where this is not known, as has been done with scandiun1 (atomic weight 44), yttrium (atomic weight 89.6), and fluorine, and furthermore to tentatively fix both the atomic weight and atonic volunie of unknown elements, such as eka-tellurium (atomic weight c212), VII ${ }^{1}$, $\mathrm{VII}^{11}, \mathrm{VII}^{11}$, etc. It has proved possible to construct a portion of an assumed eight cycle of dimensions 15.044×6, although elements of so high atomic weight have never been discovered, and to locate elements along the "rare earth slope" in cycle VI. It is not necessary, however, either to assert or deny the
actual existence of elements having the positives thus assigned, although some of them, such as eka-tellurium, VII ${ }^{1}$, VII 11, VII ${ }^{111}$, all of lower atomic weight than thorium, probably occur somewhere in nature. It is enough to recognize a general relationship between the elements, as revealed in a geometrical form by the particular method herein described. Of the elements on the "rare earth slope" it may be said that if they should be found to occur as they are placed they would be in lineal analogy with the known elements, and that although it will probably ultimately be possible to classify them in the usual groups their properties will be found to be so greatly dominated by their position in the earth region of cycle VI that the structural resemblance between their compounds and the compounds of their analogues in the lower cycles will be obscure.

The atomic volumes of hydrogen, nitrogen, and oxygen have been published while this investigation was in progress, and these elements have been found to fall into the system of lines. The accompanying table shows the atomic weights and atomic volumes which have been used in setting out the chart.

The existence of a series of points positionally interrelated by lines such as those here described appears to be of mathematical interest independently of reference to any special chemical significance.
1.

Through an Intersection and Two Elements.

$\begin{gathered} \text { Intersection. } \\ B_{30} \end{gathered}$	Group I. Na	Group II. Mg	Group III.	Group IV.
C_{90}	K	Ca		
D_{90}	Rb	Sr		
$E_{\mathrm{I}_{2}}$	Cs	Ba	La	
$F_{\text {r20 }}$	$\mathrm{VII}^{\mathrm{I}}$ (223.7)	VIIII(228.2)	VII ${ }^{\text {III }}$ (230.8.)	Th
$G_{\text {I20 }}$	VIII ${ }^{\text {² }}$ ($)$	VIIIII ()	VIII ${ }^{\text {III }}$ ()	VIII ${ }^{\text {IV }}$
E_{60}	Li	Ca		
G_{60}	Na	Ca		
$F_{3}{ }^{\circ}$	K	Ba		
Same line $\left\{\begin{array}{l} \\ A_{60}\end{array}\right.$	Rb	VII ${ }^{\text {II }}$		
Same,A_{60}	Rb	VIII ${ }^{\text {II }}$		
$F_{\text {I } 80}$	Cu	Sr		
D_{30}	VII ${ }^{\text {I }}$	Be		
G_{150}	VII ${ }^{\text {I }}$	($154.5{ }^{\text {II }}$)		
B_{60}	(5_{51}.7 $7^{\text {I }}$)	(154.5 ${ }^{\text {II }}$)		
Same line $\left\{\begin{array}{l}C_{2 \mathrm{ro}} \\ C_{\text {2 }}\end{array}\right.$	Cs	(179.3 ${ }^{\text {II }}$)		
Same $C_{\text {2ro }}$	($169.4{ }^{\text {I }}$)	(179.3 ${ }^{\text {II }}$)		

Intersection.	Group I.	Group II.	Group III.	Group IV.
C_{150}	Cs	Hg		
G_{60}	H	VII		
A_{30}	$\left(169.4^{\mathrm{I}}\right)$	Hg		
E_{30}	$\mathrm{Cr}(291.1)$	Sr		

In addition to those above :
Intersection.
B_{60}
D_{60}
D_{30}
Sroup II.
Ca
Sr
E_{30}
Mg
E_{30}
D_{30}

In addition to the above :

Intersection. A_{60}	Group III. Sc	Group IV. Ti
C_{120}	La	Ce
$C_{\text {200 }}$	(173.7 ${ }^{\text {III }}$)	(175.6 ${ }^{\text {IV }}$)
$G_{\varepsilon^{\circ}}$	A1	Zr
G_{30}	B	(161.3 ${ }^{\text {IV }}$)
B_{90}	(159.4 ${ }^{\text {III }}$)	(175.6 ${ }^{\text {IV }}$)
B_{30}	Yt	(16I.3 ${ }^{\text {IV }}$)
G_{30}	($173.7^{\text {III }}$)	Th
F_{3}	V II ${ }^{\text {III }}$	VIII ${ }^{\text {rV }}$
B_{30}	La	Pb
F_{90}	Ga	Ge
G_{60}	T1	Pb
Intersection.	Group V.	Group VI.
C_{90}	Nb	Mo
B_{60}	pr Di	W
D_{120}	(166\%)	(167 ${ }^{\text {VI }}$)
C_{24}	VII ${ }^{\text {v }}$	U
C_{90}	pr Di	ne Di
B_{30}	Sb	W
B_{30}	Nb	Mo
D_{30}	VIT ${ }^{\text {V }}$	(21291)
G_{30}	(166')	(212 ${ }^{\text {VI }}$)

$\begin{gathered} \text { Intersection. } \\ D_{180} \end{gathered}$	Intersection. C_{60}	Group I. Na
G_{90}	E_{60}	K
A_{240}	B_{150}	K
C_{120}	D_{60}	Rb
C_{150}	D_{60}	Ag
G_{210}	E_{60}	Cu
C_{60}	G_{90}	Cs
A_{240}	E_{150}	VII ${ }^{\text {r }}$
A_{180}	C_{150}	(169.4 ${ }^{\text {r }}$)
$B_{\text {I50 }}$	D_{90}	(151.7 ${ }^{\text {I }}$)
$B_{i 0}$	E_{30}	Au
$G_{0} F_{60}$	$E_{120}\left(D_{159}\right)\left(C_{180}\right)$	Cr
A_{150}	E_{120}	VIII ${ }^{\text {I }}$
	II.	
Through Three Elements.		
G roup I.	Group III.	Group I.
Li	Al	Cu
H	Ga	Ag
Cu	T1	Ag
Ag	A1	Au
Li	Ga	$\mathrm{Cr}\left(29 \mathrm{I} . \mathrm{I}^{\text {I }}\right.$)
($151.7{ }^{\text {I }}$)	T1	Cr
(151.7 ${ }^{\text {I }}$)	La	(169.4) (approx.)
Li	In	(169.4 ${ }^{\text {I }}$)

Note.-In this group of lines Li is the only element of Group I having alkali-metal properties, the other elements of Group I being, for the most part, members of the subfamily.

Group I.	Group II.	Group II.
H	Mg	Cd
Li	(171.3 ${ }^{\text {II }}$)	Hg
Rb	Ca	Be
Same line ${ }^{\text {Na }}$	Ca	Ba
approx. Na	Ca	VIIII
K	Sr	(5 54.5 ${ }^{\text {II }}$)
Rb	VIIII	VIII ${ }^{\text {II }}$
VIII ${ }^{1}$	Ba	Mg
Cu	($54.55^{\text {II }}$)	VIII ${ }^{\text {II }}$
Cr	Cd	Mg
Au	(154.5 ${ }^{\text {II }}$)	Sr
(151.7 ${ }^{\text {I }}$)	Z_{11}	VIII ${ }^{\text {II }}$
($169.4{ }^{\text {I }}$)	Cd	Zn
Same line ${ }^{(169.4}{ }^{\text {I }}$)	Cd	Be
$\left(\begin{array}{l}169.4\end{array}\right)$	Zn	Be
(169.4 ${ }^{\text {I }}$)	Ca	Hg (approx.)

Group I.H		Group V .	Group II.
		P (amorph.)	(171.3 ${ }^{\text {II }}$)
Li		P	VIII ${ }^{\text {II }}$
Cu		V	Mg
Li		Nb	Hg
Li		Sb	(154.5 ${ }^{\text {II }}$)
Na		Sb	(171.3 ${ }^{\text {II }}$)
Same line ${ }^{\text {1 }}$	K	(166 ${ }^{\text {v }}$)	($154.5^{\text {II }}$)
	1. K	pr Di	Sr
	K	pr Di	($154.5{ }^{\text {II }}$)
	K	(166 ${ }^{\text {r }}$)	Sr
Same line ${ }^{1}$	$\{\mathrm{Au}$	(166\%)	Sr
	\{ Au	pr Di	Sr
	Au	Sb	Ca
	Ag	Nb	Ca
	Au	As	Mg
	Au	VII ${ }^{\text {V }}$	VIII ${ }^{\text {II }}$
	Cr	Nb	Mg
	Cr	Bi	Sr
	($151.7{ }^{\text {I }}$)	P	Mg
Group II.Mg		Group III.	Group III.
		Sc	Yt
Same line	${ }^{\text {Sr }}$	Sc	A1
	\{ Sr	A1	B
	$\mathrm{Sr}_{\mathrm{Sr}}$	Sc	B
Cd		Ga	A1
Mg		La	VII ${ }^{\text {III }}$
Nearly coincident	\{ Be	(159.4 ${ }^{\text {III }}$)	VIIIIII
	($154.5{ }^{\text {II }}$)	($159.4{ }^{\text {III }}$)	VIII ${ }^{\text {III }}$
	Cd	(159.4 ${ }^{\text {III }}$)	VII ${ }^{\text {III }}$
	Be	Ga	VII ${ }^{\text {III }}$
	Sr	La	($173.7^{\text {III }}$)
	[Hg	(173.7 ${ }^{\text {III }}$)	Al
	Hg	(173.7 ${ }^{\text {III }}$)	Ga
Same line	e 3 Hg	Ga	Al
	Cd	Ga	Al
	Cd	A1	(173.7 ${ }^{\text {III }}$)
	($17 \mathrm{7} \cdot 3^{\text {II }}$)	(173.7 ${ }^{\text {III }}$)	Yt
	Hg	La	($159.4{ }^{\text {III }}$)
	Ca	Yt	La
	VII ${ }^{\text {II }}$	In	La
	Zn	In	VII ${ }^{\text {III }}$
	Be	In	VIII ${ }^{\text {III }}$

${ }^{1}$ This line passes through $\mathrm{K}, \mathrm{Sr}, \mathrm{I}$, pr $\mathrm{Di}\left(154.5^{\mathrm{II}}\right)$, (166^{V}), Au, and forms several combinations besides these four ; e.g., K, $\mathrm{Sr},\left({ }^{1} 54.5^{\mathrm{r}}\right)$; K, I, Au ; $\mathrm{Au}{ }_{\text {I } 54.5}, \mathrm{Sr} ; \mathrm{Au}\left(166^{\mathrm{V}}\right)$, pr Di, etc. Several similar lines exist.

1 The position of silicon necessary for this line is higher than shown on the chart. The specific gravity of silicon is variously stated.

Group I.	Group V.	Group V.
H	As	Ta
Li	As	Nb
K	pr Di	$\left(166^{\mathrm{V}}\right)$
Cu	$\left(166^{\circ}\right)$	Bi
Cu	V	N
Au	Ta	$\mathrm{P}(\mathrm{red})$
Au	$\left(166^{\mathrm{V}}\right)$	pr Di

Several approximate lines are not given; e. g., Cr, Ta, and V. The coincidences are less perfect with the elements of Group V than with all other elements.

Group II. Be	Group II. $\left(\mathrm{I} 54 \cdot 5^{\mathrm{II}}\right)$	Group III VIII ${ }^{\text {III }}$
Ca	($154.5{ }^{\text {II }}$)	T1
Same line $\begin{cases}\mathrm{Be}\end{cases}$	(154.5 $5^{\text {II }}$)	In
Same line $\{\mathrm{Be}$	($554.5^{\text {II }}$)	VIII ${ }^{\text {III }}$
Hg	Cd	Ga
Group II.	Group II.	Group II.
Cd	Ba	VII ${ }^{\text {II }}$
Be	Zn	Cd
Mg	(171.3 ${ }^{\text {II }}$)	Hg
Group II.	Group V .	Group IV.
Be	As	Ce
Be	V	Sn
Mg	As	($175.6{ }^{\text {IV }}$)
Mg	(166 ${ }^{\text {V }}$)	Pb
Hg	(166 ${ }^{\text {r }}$)	Zr
[Hg	Nb	${ }^{1} \mathrm{Si}$
Same line ${ }^{\text {Hg }}$	As	${ }^{1} \mathrm{Si}$
Same line ${ }^{\left(171.33^{\text {II }} \text {) }\right.}$	As	${ }^{1} \mathrm{Si}$
($171.3{ }^{\text {II }}$)	Nb	${ }^{1} \mathrm{Si}$
($154.5{ }^{\text {II }}$)	Sb	${ }^{1} \mathrm{Si}$
Group II.	Group Vi.	Group IV,
Same line $\left\{\begin{array}{l}\text { Zn } \\ \\ \end{array}\right.$	Mo	Th
Same line $\left\{\mathrm{Zn}_{\mathrm{n}}\right.$	Mo	VIII ${ }^{\text {IV }}$
Same line $\left\{\begin{array}{c}\text { Cd }\end{array}\right.$	Mo	(16I.3 ${ }^{\text {IV }}$)
Same line $\{\mathrm{Cd}$	Mo	C
Be	(212 ${ }^{\text {VI }}$)	(161.3 ${ }^{\text {IV }}$)
(Be	Cr	Pb
Same line $\{\mathrm{Be}$	($167{ }^{\text {vr }}$)	Pb
Be	Mo	Pb
Same line $\left\{\begin{array}{l}\text { Mg }\end{array}\right.$	0	VIII ${ }^{\text {IV }}$
	Se	VIII ${ }^{\text {IV }}$
Ca	(212 ${ }^{\text {VI }}$)	Th
Ca	ne Di	Pb

${ }^{1}$ See previous note on position of silicon.

Group II.$\mathrm{Zn}, \mathrm{Ti}, \mathrm{~S}, \mathrm{Ca}$		$\begin{aligned} & \text { Group vi. } \\ & \mathrm{Te} \end{aligned}$	$\begin{aligned} & \text { Group IV. } \\ & \left(\mathrm{I} 6 \mathrm{I} \cdot 3^{\text {IV }}\right) \end{aligned}$
$\mathrm{Be}, \mathrm{Ge}, \mathrm{Te}, \mathrm{Ca}$		(167 ${ }^{\text {Y1 }}$	Zr
	Sr	W	Ce
	Sr	W	(175.6 ${ }^{\text {IV }}$)
	Hg	$\left(167{ }^{\text {r1 }}\right.$)	Sn
	Hg	Te	(161.3 $3^{\text {IV }}$)
	Zn	U	(175.6 $6^{\text {IV }}$)
Same line	$\{\mathrm{Zn}$	Cr	Sn
	(VIII ${ }^{\text {II }}$	Cr	Su
Approx.	Cd	U	Ti
Same line $\{$	f Cd	O	${ }^{1} \mathrm{Ge}$
	(Cd	0	Ti
	Cd	Cr	($\mathrm{I} 6 \mathrm{I} .3^{\text {IV }}$)
Same line $\{$	V VIII ${ }^{\text {II }}$	Se	Si
	V VIII ${ }^{\text {II }}$	Se	Ti
	VIII ${ }^{\text {II }}$	Cr	Sı
Approx.	VIII ${ }^{\text {II }}$	S	Zr
	$\begin{aligned} & \text { Group iI. } \\ & \mathrm{Be} \end{aligned}$	Group IV. Th	Group IV. VIII ${ }^{1 \mathrm{y}}$
Same line $\{$	$\{\mathrm{Mg}$	Sn	Pb
	\{ Mg	Sn	(161.3^{15})
	Mg	Ge	175.6
	Ca	Ce	Pb
	Ba	Ti	C
	Sr	Ce	(175.6 $6^{1 \mathrm{~V}}$)
	Cd	Ge	($175.6{ }^{\text {IV }}$)
	Cd	Th	VIII ${ }^{\text {IV }}$
	[Hg	Ge	Si
Same line Approx.	(171.3 ${ }^{\text {II }}$)	Ge	Si
	Hg	Ge	Ti
	($\mathrm{I}_{1} 1.3{ }^{\text {II }}$)	Ge	Ti
	Hg	(16I.3 ${ }^{\text {IV }}$)	Zr
	VIII ${ }^{\text {II }}$	Ce	Ge
	VII ${ }^{\text {II }}$	Zr	Ti
	(171.3 ${ }^{\text {II }}$)	Pb	Th
	roup ir.	Group Vi.	Group VI.
	Ba	S	\bigcirc
	Ba	Se	Cr
	Ca	Te	U
	Sr	$167{ }^{\text {ri }}$	W
	(171.3 ${ }^{\text {II }}$)	Se	U
	Cd	S	W
Approx.	Be	Cr	Mo
$\begin{gathered} \text { Approx. } \\ \text { only. } \end{gathered}$	$\{\mathrm{Mg}$	Se	ne Di
	Mg	Te	ne Di
1 Point a little high.			

List of Elements with Specific Gravities and Atomic Weights Used in Preparation of Chart of Atomic Volumes.

Element.	Atomic weight.	Atomic volume.	D.
Aluminum	27.02	10.4	2.583
Antimony	120.0	17.9	6.697
Arsenic	74.9	13.1	5.725
Barium . .	136.8	(36.5)	(3.74)
Beryllium	9.08	4.9	1.85

${ }^{1} \mathrm{Th}$ is and several other lines point to a slightly lower atomic volume for Sn .
${ }^{2}$ This and several other lines point to a slightly lower atomic volume for Sb .

Element.	Atomic weight	Atomic volunie.	D.
Bismuth	208.0	20.8	10.00
Boron	10.97	4. I	2.68
Bromine	79.75	25.0	3.188
Cadmium	III.7	13.08	8.546
Cadmium	III. 7	I 2.91	8.65
Caesium	132.7	70.6	1.88
Calciunı	39.91	(c25.3)	(1.557)
Carbon (dia.)	I 1.97	3.4	3.518
Cerium.	I 39.9	20.8	6.73
Chlorine	$35 \cdot 37$	26.6	I. 33
Chrominm	52.45	7.71	6.8
Cobalt	58.8 ${ }^{\text {d }}$
Copper	63.2	7.06	8.945
n-Didymium. \cdot.
proDidymium...	. .	\cdots	\cdots
Fluorine.....		. .	-•••
Gallium	69.9	II. 7	5.96
Germanium.	72.32	13.2	5.469
Gold.	Ig6.7	10.2	19.3
Hydrogen.
Indium	II3.4	I5.3	7.42
Iodine	126.53	25.8	4.917
Iridium	192.5	8.6	22.42
Iron	55.9
Lanthanum..	I38.2	22.4	6.163
Lead.......	206.4	18.2	11.35
Lithium	7.01	II. 9	5.89
Magnesium	24.0	14.0	1.71
Manganese.	55.0	6.86	8.01
Mercury	199.8	14.7	13.596
Molybdenum	95.9	II. I	8.64
Nickel.	58.6	6.5	8.97
Niobiuni	94.0	13.3	7.06
Nitrogen
Osmium	190.3	8.5	22.447
Oxygen.......	15.96	
Phosphorus (red)	30.96	14.7	2.106
Platinum	194.3	9.0	21.5
Potassium	39.04	45.1	8.65
Rhodium	102.7	8.48	I2.I
Rubidium	85.2	56.0	I. 52
Ruthenium	IOI. 4	8.03	12.63
Scandium	
Selenium	78.8	16.7	4.7
Silicon..........	28.3	II, 4	2.49

Element.	Atomic weight.	Atomic volume.	D.
Silver....	107.66	10.18	10.57
Sodium	22.995	$23 \cdot 3$	0.985
Strontium	87.3	35.0	2.5
Sulphur	31.98	16.4	1.958
Tantalum	I82.0
Tellurium	125.0	20.0	6.255
Thallium	203.64	II.8I
Thallium	203.64	. . .	II.91
Thorium	232.0	20.9	II, I
Tin	II8.8	16.3	$7 \cdot 3$
Titanium	47.9	I3.3	$3 \cdot 59$
Tungsten	183.6	9.6	19.13
Uranium	239.0	12.8	I 8.685
Vanadium	51.2	9.3	$5 \cdot 5$
Zinc	65.3	9.4	6.9
Zirconium	90.0	21.2	4.25

REMARKS ON LIST OF ELEMENTS.

Barium.-The lines cross at an atomic volume of 36.5 , equal to 3.74 specific gravity. This is between the values recorded for the element, which vary from 3.5 to 4 (mean 3.75).

Bismuth.-The specific gravity of liquid bismuth at the melt-ing-point is taken; this is the highest specific gravity of the element. ${ }^{1}$

Calcium.-The point taken in the chart was found by the crossing of the lines. It corresponds to an atomic volume of 25.3 , equal to 1.577 specific gravity. Matthiessen gives 1.57 , and this apparently is the only published result.

Germanium.-The point taken is $c 15.34$, which is a little too high. 15.3 would be better, and this corresponds to a specific gravity of 5.44 . Winkler gives 5.469 .

Hydrogen.-An atomic volume of 14.6 is assigned in the chart. This is about two-tenths higher than the figure recently given by Dewar. The lines drawn through this element place it in atom-analogy with Group I. It is sometimes placed in Group VII.

Silicon.-The lines indicate an atomic volume of 12.5 , equal to 2.26 specific gravity. This value is between the values given by Wöhler (2.49 at $10^{\circ} \mathrm{C}$.) and Winkler (2.149-2.197).

Strontium.-The point at which the lines intersect is 34.5 ,
1 Vincentini : J. Chem. Soc., $189 I$, II, 518.
equal to 2.53 specific gravity. The determinations made with doubtfully pure specimens vary from 2.4 to 2.58 .

Sulphur.-Deville's results for monoclinic sulphur.
Thallium. - The chart indicates a somewhat higher gravity (ir.98) than Crookes obtained from the netal in the form of wire (tr.91).

Zirconium.-The atomic volume apparently should be a little greater tha11 21.2.

THE OIL OF CORN. ${ }^{1}$

By C. G. Hopkins.
Received September 27, 1898.

THE presence of oil in the corn kernel was discovered by Bizio^{2} in 1823 . A partial analysis by Hoppe-Seyler ${ }^{3}$ gave the following as the percentage composition of the oil :

$$
\begin{aligned}
& \text { Cholesterol } 2.65 \\
& \text { Protogon }
\end{aligned}
$$

The statement is made that the oil contains stearin, palmitin, and much olein, and the melting-point of the fatty acids is given as 51° to $54^{\circ} \mathrm{F}$. ($\mathrm{I} 1^{\circ}$ to $\mathrm{I} 2^{\circ} \mathrm{C}$.).

Some of the so-called physical and chemical "constants," which have been determined by several investigators are given below :

	Specific graxity of oil at $15^{1} \mathrm{C}$.	Unsaponifiable substance. Per cent.	$\begin{aligned} & \text { Iodine } \\ & \text { absorption } \\ & \text { Per cent. } \end{aligned}$
Spüller ${ }^{\text {3 }}$		I. 35	I 19.7
Smith ${ }^{6}$. 0.9244	122.9
Hart ${ }^{7}$. ${ }^{\text {. }}$. 0.9239	I. 55	117.0
Rokitianski ${ }^{\text { }}$.	... 0.8360		75.8

1 From advance sheets of the author's thesis "The Chemistry of the Corn Kerne1," for the degree of Doctor of Philosophy, Coruell University, 1898 , which will be published as Bulletin No. 53 of the University of Illinois Agricultural Experiment Station.

2 I. Chem. u. Phys., 5823, 37, 377.
8 Med. Chem. Untersuchungen, 1, 162 ; Bull. Soc. Chim., $1866,[2], 6,342$; Jsb. Fortschritte der Chem., 1866, 695.

4 I have not been able to see Hoppe-Seyler's original paper. Presumably the protogon is the substance now termed lecithin, and the methods employed in estimating it and cholesterol were similar to those which are discussed herein.
${ }^{5}$ Dingler's poly. J., $1887,264,626$.
6 /. Soc. Chem. Ind., 1892, 11, 504.
T Ibid., 1894, 13, 257, from Chem. Ztg., 17, 1522.
${ }^{8}$ Inaugural Dissertation, St. Petersburg, 1894; Pharm. Ztschr. Russland, I897, 33, 712 ; Chem. Centrbl., 5895, [4], 7, I, 22.

[^0]: 1 See the preceding paper.
 2 The series $1,3,6, \ldots$, is such that each term is made up of the sums of the natural numbers $5,2,3,4,5,6$, etc.

